
LA-U R- 0 1 -
Approved forpublic release;
distribution is unlimited.

Tit/@.

Author(s).

Submitted to

HARDWARE-AND-SOFTWARE-BASED COLLECTIVE
COMMUNICATION ON THE QUADRICS NETWORK

Eitan Frachtenberg, CCS-3
Fabrizio Petrini, CCS-3

NCA 2001

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, Is operated by the University of California forthe US.
DeDartment of Enemy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
r e t h s a nonexcluspe, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher Identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technlcal correctness.

Form 836 (WOO)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Hardware- and Software-Based Collective Communication
on the Quadrics Network *

Pabrizio Petrini, Salvador Coll, Eitan Frachtenberg and Adolfy Hoisie

CCS-3 Modeling, Algorithms, & Informatics
Computer & Computational Sciences Division

Los Alamos National Laboratory
{fabrizio, scol1,eitanf ,hoisie}@lanl.gov

Abstract

The efJicient implementation of collective communica-
tion patterns in a parallel machine is a challenging de-
sign effort, that requires the solution of many problems. In
this paper we present an in-depth description of how the
Quadrics network supports both hardware- and sofnuare-
based collectives. We describe the main features of the 1wo
building blocks of this network, a network interface that can
perform zero-copy user-level communication and a worm-
hole switch. We also focus our attention on the routing
and $ow control algorithms, deadlock avoidance and on
how the processing nodes are integrated in a global, virtual
shared memory.

Experimental results conducted on 64-node AlphaServer
cluster indicate that the time to complete the hardware-
based barrier synchronization on the whole network is as
low as 6 ps, with veiy good scalability. Good latency and
scalability are also achieved with the software-based syn-
chronization, which takes about 15 ps. With the broad-
cast, similar performance is achieved by the hardware- and
software-based implementations, which can deliver mes-
sages of up to 256 b,ytes in 13 ps and can get a sustained
bandwidth of 288 Mbyteshec on all the nodes, with wres-
sages larger than 64KB.

The hardware-based barrier is almost insensitive to the
network congestion, with 93% of the synchronizations tak-
ing less than 20 ps. On the other hand, the software
based implementation suflers from a signif cant perfor-
mance degradation. In high load environments the hard-
ware broadcast maintains a reasonably good performance,
delivering messages up to 2KB in 200 ps, while the software
broadcast suffers from slightly higher latencies inherited by

*The work was supported by the U.S. Department of Energy throiigh
Los Alamos National Laboratory contract W-7405-ENG-36

the synchronization mechanism.

1 Introduction

Many scientific applications exhibit the need of com-
munication patterns which involve global data movement
and global control [4]. Barrier synchronization, broadcast,
gather, scatter, reduce and total exchange are typical exam-
ples of collective communication patterns.

Hardware or software support for multicast communi-
cation can substantially improve the performance and the
resource utilization of a parallel computer. Software over-
head accounts for a high percentage of the communication
latency, and replacing several point-to-point primitives with
a single multicast operation may substantially decrease the
communication latency. Furthermore, when a node sends
the same message towards several destinations, some of
these replicated messages may traverse the same commu-
nication channels, generating more traffic then needed.

A common network design trend is to place a communi-
cation processor in the network interface [11. This processor
can quickly handle incoming messages and perform sim-
ple computations without interacting with the host node [2].
The close integration of these network processors with the
capability of performing multicast communication is likely
to play an important role in the near future. In fact, the
multicast can be enhanced to perform some type of active-
message [161 computation on the set of destinations. This
creates the opportunity of executing system-level operations
to enhance fault-tolerance, for example to check the status
of the processing nodes, perform distributed algorithms to
balance the load, or to synchronize the local clocks. More
generally, these mechanisms can help to integrate the re-
sourcc:s in a parallel machine, as if they were a single seam-
less system.

Hardware support for multicast communication requires
many functionalities, that are dependent on the network
topology, the routing algorithm and the flow control strat-
egy. For example, in a wormhole network, switches must be
capable of forwarding flits from one input channel to mul-
tiple output channels at the same time in a tree-like fashion
[131. Unfortunately, these tree-based algorithms can suf-
fer from blocking problems in the presence of congestion
[14]. Also, the packets must be able to encode the set of
destinations in easy-to-decode, compact manner, in order to
reduce the packet size and to guarantee fast routing times in
the switches.

Software multicasts, based on unicast messages, are sim-
pler to implement, do not require dedicated hardware and
are not constrained by the network topology and routing al-
gorithms, but they can be much slower than the hardware
ones.

In this paper we analyze in depth how hardware- and
software-based multicasts are designed and implemented in
the Quadrics network (QsNET).

The paper is logically divided into two parts. In the first
part we analyze the relevant design issues of the network.
The list include the main characteristics of the network in-
terface, the communication libraries, how local memories
are integrated in a global shared memory, the topology of
the interconnection network, the routing algorithm, and the
link-level and end-to-end flow control algorithms. This ini-
tial part introduces the mechanisms at the base of the hard-
ware and software multicast primitives that, on their turn are
at the base of more sophisticated collective communication
patterns as broadcasts, barriers, scatter, gather, reduce, etc.

In the second part we provide an extensive performance
evaluation of two user-level collective communication pat-
terns, barrier and broadcast, implemented using both hard-
ware and software multicast algorithms. One important
contribution of this paper, is the performance evaluation of
these algorithms under network congestion.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the QsNET hardware build-
ing blocks and their collective communication capabili-
ties. Section 3 discusses the hierarchy of communication
libraries, while Section 4 gives a detailed description of the
main collective communication services. The experimen-
tal methodology is described in Section 5 and Section 6
presents the experimental results and performance analysis.
Finally, in Section 7, some conclusions are drawn.

2 TheQsNET

The QsNET is based on two building blocks, a pro-
grammable network interface called Elan [111 and a low-
latency high-bandwidth communication switch called Elite
[121. Elites can be interconnected in a fat-tree topology [6].

The network has several layers of communication libraries
which provide trade-offs between performance and ease of
use. Other important features are hardware support for col-
lective communication patterns and fault-tolerance.

2.1 Elan

The Elan' network interface links the high-performance,
multi-stage Quadrics network to a processing node contain-
ing one or more CPUs. In addition to generating and ac-
cepting packets to and from the network, the Elan also pro-
vides substantial local processing power to implement high-
level message-passing protocols such as MPI. The internal
functional structure of the Elan, shown in Figure 1, centers
around two primary processing engines: the microcode pro-
cessor and the thread processor.

The 32-bit microcode processor supports four separate
threads of execution, where each thread can independently
issue pipelined memory requests to the memory system. Up
to eight requests can be outstanding at any given time. The
scheduling for the microcode processor is extraordinarily
lightweight, enabling a thread to wake up, schedule a new
memory access on the result of a previous memory access,
and then go back to sleep in as few as two system-clock
cycles.

The four microcode threads are described below: (1) in-
putter thread: Handles input transactions from the network.
(2) DMA thread: Generates DMA packets to be written to
the network, prioritizes outstanding DMAs, and time-slices
large DMAs so that small DMAs are not adversely blocked.
(3) processor-scheduling thread: Prioritizes and controls
the scheduling and descheduling of the thread processor. (4)
command-processor thread: Handles operations requested
by the host processor at user level.

The thread processor is a 32-bit RISC processor used to
aid the implementation of higher-level messaging libraries
without explicit intervention from the main CPU. In order
to better support this implementation, the thread processor's
instruction set was augmented with extra instructions that
construct network packets, manipulate events, efficiently
schedule threads, and block save and restore a thread's state
when scheduling.

The MMU translates 32-bit virtual addresses into ei-
ther 28-bit local SDRAM physical addresses or 48-bit PCI
physical addresses. To translate these addresses, the MMU
contains a 16-entry, fully-associative, translation lookaside
buffer (TLB) and a small data-path and state machine used
to perform table walks to fill the TLB and save trap infor-
mation when the MMU faults.

The Elan contains routing tables that translate every vir-
tual process number into a sequence of tags that determine

'This paper refers to the Elan3 version of the Elan. We will use Elan
and Elan3 interchangeably throughout the paper.

"y
Figure 1. Elan Functional Units

the network route. Several routing tables can be loaded in
order to have different routing strategies.

The Elan has 8KR of cache memory, organized as 4 sets
of 2KB, and 64MB of SDRAM memory. The cache line
size is 32 bytes. The cache performs pipelined fills from
the SDRAM and is able to issue a number of cache fills and
write backs for different units while still being able to ser-
vice accesses for units that hit on the cache. The interface to
the SDRAM has 64 bits and there are 8 check bits added to
provide Error Code Correction. The memory interface also
contains a 32 byte write buffer and a 32 byte read buffer.

The link logic transmits and receives data from the net-
work and outputs 9 bits and a clock signal on each half of
the clock cycle. The flit encoding scheme allows data and
command tokens to be interleaved on the link and prevents
a corrupted data word being interpreted as a token or a to-
ken being interpreted as another token. Each link provides
buffer space for two virtual channels with a 128 entry, 16
bit FIFO RAM for flow control.

2.2 Elite

The other building block of the QsNET is the Elite
switch. The Elite provides the following features: (1) 8
bidirectional links supporting two virtual channels in each

direction, (2) an internal 16 x 8 full crossbar switch2, (3) a
nominal transmission bandwidth of 400 MB/s on each link
direction and a flow through latency of 35 ns, (4) packet
error detection and recovery, with routing and data transac-
tions ClRC protected, (5) two priority levels combined with
an aging mechanism to ensure a fair delivery of packets in
the same priority level, (6) hardware support for broadcasts,
(7) and adaptive routing.

The Elite switches are interconnected in a quaternary fat-
tree topology, which belongs to the more general class of
the k-iiry n-trees [8] [7]. A quaternary fat-tree of dimen-
sion n is composed of 4n processing nodes and n * qn-'
switches interconnected as a delta network, and can be re-
cursively build by connecting 4 quaternary fat trees of di-
mension n - 1.

Quaternary fat trees of dimension 1, 2 and 3 are shown
in Figure 2.

2.2.1 Packet Routing and Flow Control

Each user- and system-level message is chunked in a se-
quence of packets by the Elan. An Elan packet contains
three main components. The packet starts with the (1) rout-
ing information, that determines how the packet will reach
the destination. This information is followed by (2) one or

the two virtual channels.

--
2Tht: crossbar has two input ports for each input link, to accommodate

Figure 2. 4-ary n-trees of dimension 1, 2 and
3.

more transactions consisting of some header information, a
remote memory address, the context identifier and a chunk
of data, which can be up to 64 bytes in the current imple-
mentation. The packet is terminated by (3) an end of packet
(EOP) token, as shown in Figure 3.

Transactions fall into two categories: write block trans-
actions and non-write block transactions.

The purpose of a write block transaction is to write a
block of data from the source node to the destination node,
using the destination address contained in the transaction
immediately before the data. A DMA operation is imple-
mented as a sequence of write block transactions, parti-
tioned into one or more packets (a packet normally contains
5 write block transactions of 64 bytes each, for a total of
320 bytes of data payload per packet).

The non-write block transactions implement a family
of relatively low level communication and synchronization
primitives. For example, non-write block transactions can
atomically perform remote test-and-write or fetch-and-add
and return the result of the remote operation to the source,
and can be used as building blocks for more sophisticated
distributed algorithms.

Elite networks are source routed. The routing informa-
tion is attached to the header before injecting the packet into
the network and is composed by a sequence of Elite link
tags. As the packet moves inside the network, each Elite

Figure 3. Packet Transaction Format

removes the first routing tag from the header, and forwards
the packet to the next Elite in the route or to the final des-
tination. The routing tag can identify either a single output
link or a group of adjacent links.

The transmission of each packet is pipelined into the
network using wormhole flow control. At link level, each
packet is partitioned in smaller units called flits (flow con-
trol digits) [3] of 16 bits. The header flit opens a cir-
cuit between source and destination, and this path stays in
place until the destination sends an acknowledgement to
the source. At this point, the circuit is closed by sending
and End Of Packet (EOP) token. It is worth noting that
both acknowledgement and EOP can be tagged to commu-
nicate control information. So, for example, the destination
can notify the successful completion of a remote non-write
block transaction without explicitly sending an extra packet.

Minimal routing between any pair nodes can be accom-
plished by sending the message to one of the nearest com-
mon ancestors and from there to the destination. That
is, each packet experiences two routing phases, an adap-
tive ascending phase to get to a nearest common ancestor,
followed by a deterministic descending phase. The Elite
switches can adaptively route a packet picking the least
loaded link.

2.3 Collective Communication

Packets can be sent to multiple destinations using either
the hardware multicast capability of the network or a soft-
ware tree implemented with point-to-point communication
between the Elan thread processors.

2.3.1 Hardware Multicast

A multicast packet can only take a pre-determined path, in
order to avoid deadlocks. In Figure 4 a) it is shown that the
top leftmost switch is chosen as the logical root for the col-
lective communication, and every request, in the ascending

C) d)

Figure 4. Hardware Multicast

phase, must pass through one of the dotted paths until it gets
to the root switch. In Figure 4 b) we can see how a multi-
cast packet reaches the root node; the multiple branches are
then propagated in parallel. If another collective is issued
while the first one is still in progress, it is serialized in the
root switch. The second multicast packet will be able to
proceed only after an EOP token cleans the circuit of the
first communication. All nodes connected to the network
are capable of receiving the multicast packet, as long as the
multicast set is physically contiguous.

For a multicast packet to be successfully delivered, a
positive acknowledgement must be received from all the re-
cipients of the multicast group. The Elite switches com-
bine the acknowledgements [9] returning a single one to the
source. Acknowledgements are combined in a way that the
“worst” ack wins (a network error wins over an unsuccess-
ful transaction, which on its turn wins over a successful
one), returning a positive ack only when all the partners
in the collective communication complete the distributed
transaction with success.

2.3.2 Software Tree
The Elan thread processor can receive an incoming packet,
do some basic processing (such as an atomic increment of
a variable) and send one or more replies in few ps, with-
out any interaction with the main processors. Software col-
lectives can be implemented using the communication and
computation capability of the Elan thread processor, for ex-
ample multicast trees. Software collectives can be based on
trees with programmable arity, depth and regularity, and do
not suffer from the limitation that the destination set must
be composed of adjacent nodes.

User Applications

Figure 5. Elan3 programming library hierar-
chy

3 Programming libraries

The Elan network interface can be programmed using
several programming libraries [101, as outlined in Figure
5. These libraries trade speed with machine independence
and programmability. Starting from the bottom, Elan3lib is
the lowest programming level available in user space which
allows the access to the low level features of the Elan3.
At this level, processes in a parallel job can communicate
with each other through an abstraction of distributed virtual
shared memory. Each process in a parallel job is allocated
a virtual process id (VPID) and can map a portion of its ad-
dress space into the Elan. These address spaces, taken in
combination, constitute a distributed virtual shared mem-
ory. Remote memory (Le., memory on another processing
node) can be addressed by a combination of a VPID and a
virtual address. Since the Elan has its own MMU, a process
can select which part of its address space should be visible
across the network, determine specific access rights (e.g.
write- or read-only) and select the set of potential commu-
nication partners.

Elanlib is a higher level layer that frees the programmer
from the revision-dependent details of the Elan, and extends
Elan3lib with point-to-point, tagged message passing prim-
itives (called Tagged Message Ports or Tports) and support
for collective communication. Standard communication li-
braries as such MPI-2 [5] or Cray Shmem are implemented
on top of Elanlib.

3.1 Elan3lib

The Elan3lib library supports a programming environ-
ment where groups of cooperating processes can transfer
data directly, while protecting process groups from each
other in hardware. The communication takes place at user
level, with no data copying, bypassing the operating system.
The main features of Elan3lib are: (1) event notification, (2)
the memory mapping and allocation scheme and (3) remote
DMA transfers.

3.1.1 Event Notification

Events provide a general purpose mechanism for processes
to synchronize their actions. The mechanism can be used
by threads running on the Elan and processes running on
the main processor. Events can be accessed both locally
and remotely. Thus, processes can be synchronized across
the network, and events can be used to indicate the end of
a communication operation, such as a completion of a re-
mote DMA. Events are stored in Elan memory, in order to
guarantee the atomic execution of the synchronization prim-
i t i v e ~ ~ . Processes can wait for an event to be triggered by
blocking or polling. In addition, an event can be tagged
as being a block copy event. The block copy mechanism
works as follows. A block of data in Elan memory is initial-
ized to hold a pre-defined value. An equivalent sized block
is located in main memory, and both are in the user’s virtual
address space. When the specified event is set, for example
when a DMA transfer has completed, a block copy takes
place. That is, the block in Elan memory is copied to the
block in main memory. The user process polls the block
in main memory to check its value, (for example, bring-
ing a copy of the corresponding memory block into the L2
cache) without having to poll for this information across the
PCI bus. When the value is the same as that initialized in
the source block, the process knows that the specified event
has happened.

3.1.2 Memory Mapping and Allocation

The MMU in the Elan can translate between virtual ad-
dresses written in the format of the main processor (for ex-
ample, a 64-bit word, big Endian architecture as the Al-
phaserver) and virtual addresses written in the Elan format
(a 32-bit word, little Endian architecture). For a processor
with a 32-bit architecture (for example an Intel Pentium), a
one-to-one mapping is all that is required.

In Figure 6 the mapping for a 64-bit processor is
shown. The 64-bit addresses starting at Ox1FFOC808000
are mapped to Elan’s 32 bit addresses starting at
OxC808000. This means that virtual addresses in the range
Ox1FFOC808000 to 0x1- can be accessed di-
rectly by the main processor while the Elan can access the
same memory by using addresses in the range OxC808000
to Ox-. In our example, the user may allocate main
memory using malloc and the process heap may grow out-
side the region directly accessible by the Elan delimited by
0x1-. In order to avoid this problem, both main
and Elan memory can be allocated using a consistent mem-
ory allocation mechanism. As shown in Figure 6 the MMU
tables can be set up to map a common region of virtual
memory called memory allocator heap. The allocator maps

3The current PCI bus implementations cannot guarantee atomic execu-
tion, so it is not possible to store events in main memory.

physical pages, of either main or Elan memory into this vir-
tual address range on demand. Thus, using allocation func-
tions provided by the Elan library, portions of virtual mem-
ory (1) can be allocated either from main or Elan memory,
and (2) the MMUs of both main processor and Elan can be
kept consistent.

For efficiency reasons, some objects can be located on
the Elan, for example communication buffers or DMA de-
scriptors which the Elan can process independently of the
main processor.

3.1.3 Remote DMA

The Elan supports remote DMA (Direct Memory Access)
transfers across the network, without any copying, buffer-
ing or operating system intervention. The process that ini-
tiates the DMA fills out a DMA descriptor, which is typi-
cally allocated on the Elan memory for efficiency reasons.
The DMA descriptor contains the VPIDs of both source
and destination, the amount of data, the source and destina-
tion addresses, two event locations (one for the source and
the other for the destination process) and other information
used to enhance fault tolerance. The typical steps of remote
DMA are outlined in Figure 7.

3.2 Elanlib and Tports

Elanlib is a machine independent library that integrates
the main features of Elan3lib with the Tports. Tports pro-
vide basic mechanisms for point-to-point message passing.
Senders can label each message with a tag, the sender iden-
tity and the size of the message. This is known as the en-
velope. Receivers can receive their messages selectively,
filtering them according to the identity of the sender and/or
a tag on the envelope. The Tport layer handles communi-
cation via shared memory for processes on the same node.
It is worth noting that the Tports programming interface is
very similar to MPI [151.

Elanlib provides support for collective communication
operations (those that involve a group of processes). The
most important collective communication primitives imple-
mented in Elanlib are: (1) the barrier synchronization and
(2) the broadcast.

4 Barrier Synchronization and Broadcast

4.1 Barrier Synchronization

A synchronization barrier is a logical point in’ the con-
trol flow of a parallel program at which all processes in a
group must arrive before any of the processes in the group
are allowed to proceed. Typically, a barrier synchronization

Main I'rmossor
Virlunl Address Spnee

Elan Vinual Addmss Spa-

Figure 6. Virtual Address Translation

involves a logical reduce operation followed by a broadcast
operation.

QsNET implements two different synchronization mech-
anisms in Elanlib, a mixed software and hardware barrier
called elan-gsync () and a purely hardware one called
elan-hgsync () .

The algorithm implemented with elan-gsync () uses
a balanced tree to send the 'ready' signal to the process with
virtual process identifier 0. Each process in the tree waits
for 'ready' signals from its children, and when it receives all
of them sends its own signal up to the parent process. This
phase of the barrier is illustrated in Figure 8. When the root
process receives its 'ready' signals it performs a hardware
broadcast 'go' packet which either sets an event (which all
processes are waiting for) or writes a single word in a given
memory location (which all processes are polling). If the
destination nodes are not adjacent the same tree structure is
used to distribute the data using point-to-point messages.

The elan-hgysnc () implementation (used by
MPI-Barrier [15]) uses an Elan thread to send a special
test-and-set broadcast packet. This packet spans all the
processes and compares a barrier sequence value with a
given memory location (which is updated by every process
in the group when the process reaches the barrier) to see
if it matches; if it does, the packet can then set an event

, C8ORWO

2WMB

8WO

RootNode

Figure 8. lmplementatlon of the flrst phase of
the elan-gsync() barrier for a group of 16 pro-
cesses. Each process in the group (1) walts
for the 'ready' packet from its chlldren pro-
cesses and, then (2) sends its own 'ready'
signal up to its parent.

n

I

5

Figure 7. Execution of a Remote DMA. The sending process (1) initializes the DMA descriptor in the
Elan memory and (2) communicates the address of the DMA descriptor to the command processor.
The command processor (3) checks the correctness of the DMA descriptor and (4) adds it to the DMA
queue. The DMA engine (5) performs the remote DMA transaction. Upon completion the remote
inputter (6) notifies the DMA engine which (7) sends an ack to the source Elan. Source (8-10) and
destination (1 1-13) events can be notified, if needed.

Roqt node
init barrier - 1 -

I updateseq# - -
wait event
or poll

trigger event
I ifOK -

repeat if FAIL

Node i

init harrier

- wdtevent
or poll

- twt seq#

trigf:er event
if GOOD

Figure 9. elan-hgsync() barrier implernenta-
tion. Each node sets the sequence number
of the barrier arid either waits for an event or
polls a memory location waiting for the cor-
rect sequence number. The root node of the
group sends a broadcast packet which con-
tains a condltional transaction that tests If
each node has already set the sequence num-
ber (reached the barrier). All the replies are
combined by the Elites on the way back to the
root node which receives a single ACK token.
If all the nodes are ready an EOP token Is sent
to the group to complete the barrier.

or write a word to wake up the processes waiting in the
barrier. This gives the best figures as long as the processes
enter the barrier fairly close together, otherwise it backs
off exponentially (to stop flooding the network with broad-
casts). Figure 9 shows a detailed timing diagram of this
barrier mechanism. The waiting and waking up operation
can be configured to use a busy polling of each process on
a memory location or to use an event mechanism (using a
different function called elan-hgysncEvent ()).

4.2 Broadcast

The major network communication primitive of the
Quadrics interconnection network is the remote DMA. A
DMA operation transfers data between the local and remote
address space (including Elan memory). In addition to pro-
viding point-to-point communication, DMAs can also be
used to perform group-wide operations such as broadcast
and flood DMAs (a Rood is similar to a broadcast but the
operation completes as soon as any of the destinations ac-
cepts the DMA). A group of destination processes is de-
fined by specifying a virtual group identifier. The effect of
a write broadcast DMA is to copy the data from the source
to the destination buffers in all of the processes in the group.
The basic implementation of the broadcast DMAs relies on
all receiving processes having the destination buffer at the

same virtual address, to obtain good performance.
QsNET provides broadcast hardware support that should

send a broadcast message in the same time required to send
a point-to-point message. The network can be considered
as a tree of Elite switch chips that connect an array of Elan
network interface cards. Broadcasts are propagated into the
network by sending a packet to the top of the tree and then
copying the packet to more than one switch output as the
packet is sent down the tree. Deadlocks might occur on
the way down when multiple broadcasts are sent simulta-
neously. This situation is avoided by sending broadcast
packets always to a fixed top tree switch, thus serializing
all broadcasts (Section 2.3). All the Elans connected to the
network are capable of receiving the broadcast packet, but
the hardware mechanism can only be used with a contigu-
ous subset of Elans.

Two different broadcast implementations are pro-
vided by the Elanlib library: elan-bcast () and
elan--hbcast (1 . Both must be called by all the pro-
cesses in the group involved in the broadcast operation to
guarantee that the receivers have allocated the buffers by
the time the transaction is performed by the sender process.
As a result, the broadcast is composed of two transactions:
first, a barrier synchronization and, second, the broadcast
itsel€. In both implementations, two types of memory re-
sources can be used. On the one hand a global destination
buffer, which has the same virtual address in all the pro-
cesses (Elanlib libraries provide special memory allocation
functions that guarantee this property), allows to perform
a DMA transaction directly from source to destination. On
the other hand, if this memory allocation is not used, system
buffers are utilized as intermediate copy space from which
the DMA is performed (this approach implies one copy at
the source, and another copy at the destination).

The elan-bcast () implementation uses a software-
based synchronization for the first phase similar to that uti-
lized by the first phase of elan-gsync () (Section 4.1).
The second phase is triggered by an event set in the source
node and is done using the hardware broadcast mechanism
(if all the destination Elans are contiguous) or by means of a
software-based broadcast from the source node (if the des-
tination Elans are not). This transaction distributes the data
and wakes up the processes waiting in the barrier performed
during the first phase. This implementation provides bet-
ter performance than a call to elan-gsync () (which in-
volves a software-based synchronization and a broadcast)
and a later broadcast to send the data.

The elan-hbcast () primitive calls
elan,-bcast () if the hardware broadcast mechanism is
not available, for example when the nodes are not contigu-
ous. If this mechanism is available, it performs a barrier
to synchronize all the nodes using elan-hgsync (1
(Section 4.1) and a hardware broadcast to distribute the

ilata.
The Elan hardware broadcast can only write to the mem-

ory space of a single process per node since there is only
a single context specified by the virtual process identifier.
Hence, with multiple processes per node, the only way to
use the hardware broadcast facility is to broadcast into an
area of shared memory and then get the processes to copy
from there. This has been optimized by using a FIFO like
scheme that tries to overlap the broadcast with the copies.

5 Experimental Framework

The main features of the QsNET have been tested on
a 64-node cluster of Compaq Alphaserver ES40s, running
Tru64 Unix. Each Alphaserver node is equipped with 4 Al-
pha 667MHz 21264 processors, 8GB of SDRAM and two
64 bits, 33MHz PCI I/O buses. The Elan3 PCI card QM-400
is attached to one of them and links the SMP to a quaternary
fat tree of dimension three, like the one shown in Figure 2
C).

5.1 Unidirectional Ping

We analyze the latency and the bandwidth of the net-
work by sending messages of increasing size from a source
to a destination SMP. In order to identify different bottle-
necks, the communication buffers are placed either in main
or in Elan memory. The alternatives include main memory
to main memory and Elan memory to Elan memory. These
buffers are placed in the desired type of memory using the
allocation mechanisms provided by Elan3lib, as described
in Section 3.1.

The latency is measured as the elapsed time between
the posting of the remote DMA request and the notifica-
tion of the successful completion at the destination (steps
2 through 5 and 11 through 13 in Figure 7). The unidirec-
tional ping tests for MPI are implemented using matching
pairs of blocking sends and receives. These tests provide a
performance reference to consistently analyze the results on
collective communication.

5.2 Collective Communication

The barrier synchronization and broadcast primitives
provided by the QsNET system software have been tested
using configurations ranging from 4 to 64 nodes. Results
have been obtained by averaging the results over 10000 con-
secutive tests. Average latency results and latency distribu-
tion are reported for the barrier synchronization tests. For
the broadcast tests bandwidth and latency are reported.

In addition, tests with background traffic have been per-
formed to analyze the behavior of the collective communi-
cations under network contention. This traffic is generated

by 64 processes running in 64 nodes, with all nodes inject-
ing messages into the network at maximum load. These
tests can identify performance limitations due to the inter-
ference by other applications. Two different traffic patterns
were used to generate background traffic:

Complement. The node with binary coordinates
a,-l, an-2, . . . , a1 , ao communicates with the node
a,-l, an-2, . . I , a1 , ao. This pattern uses all the net-
work links at the same time.

Uniform. Each node selects randomly its destination
for every single transaction.

To guarantee that the performance degradation of the collec-
tive communication is only due to the network contention
and not to scheduling issues, the background traffic genera-
tion and the collective communication benchmark were run
in different processors.

6 Experimental Results

6.1 Unidirectional Ping

Figure 10 a) shows the performance of the unidirectional
ping. The peak bandwidth of 335 MB/s is reached when
both source and destination buffers are placed in the Elan
memory. The maximum amount of data payload that can
be sent by the current Elan implementation is 320 bytes,
partitioned in five low-level write-block transactions of 64
bytes. For this message format, the overhead is 58 bytes,
for the message header, CRCs, routing info, etc. This im-
plies that the peak bandwidth delivered by the network is
approximately 396 MBh, or 99% of the nominal bandwidth
(400 MB/s). The asymptotic bandwidth for main memory
to main memory communication is only 200MB/s for both
Elanlib and MPI. These results also show that the PCI in-
terface running at 33MHz is the bottleneck for this type of
communication.

Figure 10 b) shows the latency in the range [0 . . .4KB].
With Elan3lib the basic latency for O-byte messages is only
2.2 ps and is almost constant at 2.4 ps for messages up to
64 bytes, because these messages can be packed as a single
write-block transaction. We note an increase in the latency
at MPI level, compared to the latency at the Elan3lib level,
from approximately 2 ps to 5.5 ps. While at Elan3lib level
the latency is mostly hardware, MPI needs to run a thread
in the Elan microprocessor in order to match the message
tags: this introduces the extra overhead responsible for the
higher latency value.

350

300

Ping Bandwidth

x-~"c..*...,.-*-..,-.~...
.... --1 ... *... *.

Ping Latency

-c

i

3 1 0 -
6 - , .

.... * 4 I...** r..
2c-0 '

....
yl:l_... ,...e * * * * * X-------*--.--

0 1 4 16 64 256 1K 4K

50

0

Message Slze (bytes) Message Slze (bytes)

(a) (b)

Figure 19. Unidirectional ping

6.2 Collective Communications Barrier Test. 1 CPU per node

6.2.1 Barrier Synchronization

Figure 11 shows the average time required to perform a
barrier synchronization when there is no other traffic in
the network. Results for the three Elanlib primitives (Sec-
tion 4.1) are shown versus the number of nodes. We can
see that the hardware-based implementations of the barrier
(elan-hgsync () and elan-hgsyncEvent ()) pro-
vide the best results when compared to the software-based
implementation (elan-gsync ()), both in absolute per-
formance and in scalability. The latency of the software-
based implementation grows as the logarithm of the num-
ber of nodes (approximately 2.5ps each time the number
of nodes is quadrupled). In this case the average latency
to synchronize 64 nodes is 1 4 . 8 ~ ~ . On the other hand, the
elan-hgsync () barrier provides an average latency of
5ps below 16 nodes and 5.5ps and 6ps for 32 and 64 nodes
respectively. The elan-hgsyncEvent () synchroniza-
tion gives latencies on average 0.7ps above those obtained
with elan-hgsync () . This is due to the additional delay
associated with the event notification. In both thread bascd
barriers, the latency increase above 16 nodes is probably
due to scheduling issues on the OS (Tru64 Unix). Better
scalability could be obtained by synchronizing all the TJnix
schedulers against the Elan clock.

The behavior of the barrier synchronization has been an-
alyzed by performing tests with uniform and complement
background traffic. The results depicted in Figure 12 show
that the performance of the various barrier implementations
is affected by the network traffic with higher degradation
when uniform background traffic, which produces higher
network contention, is used. In fact, with complement traf-
fic there is always one virtual channel available in each link.

Figure 13 shows the latency distribution of

..... ~ i ~ ..*.._ _................_ . __.. *_._____.. .. * --.......- -. 4 ._..._..... --..-
4 ' I

4 16 64
Nodes

Figure 11. Barrier Synchronization

elan.-hgsync () in a 64-node configuration. Only
2% of the operations take more than 20ps and 94% less
than 9ps when there is no background traffic. In the worst
case the average latency for 64 nodes is 13ps, with more
than 93% of the barriers taking less than 20ps. Similar
results were obtained with the elan-hgsyncEvent ()
primitive.

The latency distribution for the software-based imple-
mentation of the barrier synchronization is shown in Fig-
ure 14. Only 1% of the barriers take more than 30ps when
there is no network contention. In the presence of network
contention, elan-gsync () suffers a significant degrada-
tion in performance. In the worst case (uniform background
traffic) an average latency of 595ps is obtained and 93% of
the synchronizations complete with latencies below 605ps.

6.2.2 Broadcast

Figure 15 shows the results obtained with broadcast over
64 nodes using both algorithms supported by Elanlib (Sec-

Barrier Test. 1 CPU per node (uniform traffic) Banier Test. 1 CPU wr node lcorn~lernent traffic)

10000

1000

too

10

1

. .

256

Figure 12. Barrier Synchronization with Contention

Barrier Test - 64 nodes, 1 CPU per node (latency distribution)

elanIhgsync() '- rl\,,, elan-hgsync() .complement traffic .---*-
elen-hgsync() - unifon traffic --*-

i * ! i
; 4 '\

tion 4.2) with buffers globally allocated in main and Elan
memory, that is with the same virtual address in all pro-
cesses. The best performance is obtained, as expected,
with Elan memory. In this case the measured bandwidth
for 1MB messages is 288MB/s for both elan-bcast ()
and elan-hbcast (1 . The elan-hbcast (1 prim-
itive provides lower latencies (3 . 5 ~ ~) because it uses
hardware-based synchronization rather than a software-
based one, used by elan-bcast () . For this rea-
son the bandwidth for shorter messages is slightly higher
with elan-hbcast () . For messages up to 256

10000

1000

1W

10

1

Barrier Test. 64 nodes, 1 CPU per node (latency distribution)

8 16 32 64 126 256 512 1024 2048 4096
Latency (rs)

Figure 14. elan-gsync() Latency Distribution
with Contention

Banawiatn ana latency versus tne number or nodes ror
256KB messages are depicted in Figure 16. Both perfor-
mance metrics are insensitive to the number of nodes when
the buffers are allocated in main memory, because the PCI
bus is the bottleneck in this case. On the other hand, when
Elan memory is used, a performance degradation occurs
when the number of nodes increases above 16 (8% decrease
in bandwidth and 12% increase in latency). A similar, albeit
lower, effect is experienced when the number of nodes is in-
creased above 4 (1% differences in bandwidth and latency).

In the presence of network contention (Figure 17) the
performance of the broadcast decreases significantly. The
maximum bandwidth is obtained using main memory allo-
cation. This is caused by the job running in the background
which allocates its communication buffers in Elan memory.
This configuration gives 36MB/s with complement back-
ground traffic and 24MB/s with uniform background traffic
using 1MB messages. Although both broadcast implemen-
tations provide approximately the same maximum band-
width (with 1MB messages), the elan-hbcast () primi-

Broadcast Test. 64 Nodes, 1 CPU Der node Broadcast Test. e4 Nodes, 1 CPU per node
I-

*.q.r.rr.-Q-
4.

elan-hbcast
0 - elan-hbcastll

_I

global. maln #J9”
global. elan - p;L

50

0 -III_._

1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (bytes)

(a)

50

45

40

3 35
30

g!
3 25

20

15

10

- -- dakbcasl ’ global. nialn

..... I elan-hbcast
-. e - . elan-hbcast[]: global. elan

.... ,... elan-bcastl] global. elan
global . maln

- I
4 16 64 256 1K 4K

Message Size (bytes)

Figure 15. Broadcast

Broadcast Test. 1 CPU per node (256k bytes)

..
‘-.., ----I 320-... .Q

340 300 i--- I,

-+ elan-txast global ~ maln
elan.bcast[] 1 global. elan

* elan-hbcast global. malii
- elakhbcastlj global . elan

200 c 4
180 f- ----------/ --...-.“q

...........................I..

Broadcast Test - 1 CPU per node (256k bytes)
1600 r I

’%.. -
’%..

’.._.
1400

- elan-bcast global - maln ...r. elan-bcast! elan-hbcas 1 global. global-main elan
- B elan-hbcast[l 1 global - elan

i 1000 1

Nodes

Figure 16. Broadcast Scalability

tive obtains better performance for smaller messages thanks
to the hardware synchronization mechanism (Figures 17 (b)
and (d)), which is less sensitive to additional network traffic
(Section 6.2.1).

In terms of scalability (Figure 18) the four alternatives
suffer from the same performance degradation as the num-
ber of nodes increases. This effect slows down with the
increase in the number of nodes. This behavior suggests
that no additional significant performance decrease should
be produced by networks larger than 64 nodes.

7 Conclusion

In this paper, we presented an in-depth description of
the Quadrics interconnection network (QsNET) with spe-
cial emphasis on the support for collective communication
and its integration with the system software. We focused
our attention on two basic communication patterns: bar-
rier synchronization and broadcast. An experimental eval-
uation of hardware-based and software-based implementa-
tions of these services has been performed on a 64-node
Alphaserver cluster.

Our experiments show that the time to complete a
hardware-based barrier synchronization on the whole set of
nodes is as low as 6ps, with very good scalability for the
network configurations tested. Good latency and scalability
are also achieved with the software-based synchronization,
which completes in Ups.

Another important contribution of this paper is the anal-
ysis of the collectives in the presence of network contention.
In this case, the average latency for the hardware-based
barrier is 13p, with 93% of the synchronizations taking
less than 2 0 p . On the other hand, the software-based im-
plementation is shown to suffer a significant performance
degradation. From a practical point of view the hardware-
based barrier can be considered insensitive to the network
contention.

With the broadcast, similar results have been obtained
for the hardware-based and the software-based implemen-
tations in the absence of additional network traffic. These
results show that without contention the two algorithms
can be used interchangeably. The broadcast latency for
messages up to 256 bytes is 13ps and the bandwidth is
288MB/s. Contention tests, done in the presence of ex-
tremely high network load, show that the broadcast main-
tains reasonably good performance (i.e. less than 200ps
to deliver messages up to 2KB). In this case the hardware-
based broadcast outperforms the software-based broadcast
thanks to its hardware-based synchronization mechanism.

Overall, our analysis shows the potential of the intercon-
nect to efficiently support large scale collective communi-
cation patterns, even in the presence of high network con-
tention.

As future work, we plan to address the problem of the
serialization of the hardware broadcasts on the root node
and to study how collective communication can be furtherly
integrated with the network processor.

Acknowledgements

The authors would like to thank the Quadrics team,
David Addison, Jon Beecroft, Robin Crook, Moray
McLaren, David Hewson, Duncan Roweth and John Tay-
lor, for their invaluable support.

References

[l] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E.
Kulawick, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29-36, January 1995.

[2] Darius Buntinas, Dhabaleswar Panda, and P. Sadayappan. Perfor-
mance Benefits of NIC-Based Barrier on MyrineVGM. In Workshop
on Communication Architecture for Clusters (CAC '01). San Fran-
cisco, CA, April 2001.

[3] William J. Dally and Charles L. Seitz. Deadlock-Free Message Rout-
ing in Multiprocessor Interconnection Networks. IEEE Transactions
on Computers, C-36(5):547-553, May 1987.

[4] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection
Networks: an Engineering Approach. IEEE Computer Society Press,
1997.

[5] AI Geist, William Gropp, Steve Huss-Lederman, Andrew Lums-
daine, Ewing Lusk, William Saphir, Tony Skjellum, and Marc Snir.
MPI-2: Extending the Message Passing Interface. In Second Znterna-
tional Euro-Par Coilference, Volume I , number 1123 in LNCS, pages
128-135, Lyon, France, August 1996.

[6] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware
Efficient Supercomputing. IEEE Transactions on Computers, C-
34(10):892-901, October 1985.

[7] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High Per-
formance Networks for Massively Parallel Architectures. In Pro-
ceedings of the I I ih International Parallel Processing Symposium,
IPPS'97, pages 87-93, Geneva, Switzerland, April 1997.

[8] Fabrizio Petrini and Marco Vanneschi. Performance Analysis of
Wormhole Routed k-ary n-trees. International Journal on Founda-
tions of Computer Science, 9(2):157-177, June 1998.

[9] G. F. Pfister and V. A. Norton. Hot-spot Contention and Combin-
ing in Multistage Interconnection Networks. ZEEE Transactions on
Computers, C-34(10):943-948, October 1985.

[lo] Quadrics Supercomputers World Ltd. Elan Programming Manual,
January 1999.

[l l] Quadrics Supercomputers World Ltd. Elan Reference Manual, Jan-
uary 1999.

[12] Quadrics Supercomputers World Ltd. Elite Reference Manual,
November 1999.

[13] Rajeev Sivaram, Dhabaleswar Panda, and Craig Stunkel. Efficient
Broadcast and Multicast on Multistage Interconnection Networks us-
ing Multiport Encoding. In Proceedings of the 8th IEEE Sytnposium
on Parallel and Distributed Processing, New Orleans, LA, October
1996.

Broadcast Test. 64 Nodes, 1 CPU per node (uniform trafllc)
V - T - I I 7 - I - elan-bcast[{ global main g.;>a-;..ll':''. F

.... *... *.._ elan-bcast elan-hbcast global global. elan maln r>e....nr/l
25 20 r+-. _. elan-hbcasl[{ global. elan

elan-kcast[{ :global - elan
f

.... *_..
II '. elan-hbcast . global - maln
DI - elan..hbcas$ - global .elan :

Message Slze (bytes)

(a)

Broackast Test - 64 Nodes, 1 CPU per node (complement Iraflic)
40

35

10

Message Slze (bytns)

(4

Broadcast Test - 64 Nodes, 1 CPU par node (unlform trafllc)
'Ool' d elan- cast .'global.'maln '

.... elan hbcas 0 ~ olobal . maln
1 --*-- elan..kcast{\. global -elan

i 1 -. Q-- elanIhbcast() - Global . elan

I.....*-.., *p.".l+...*...".* * *...*-.-r,"

100
1 4 16 64 256 1K 4K 16K 64K

Message Slze (bytes)

I
100 1 1

1 4 16 64 256 1K 4K 16K 64K
Message Slze (bytes)

(d)

Figure 17. Broadcast with Contention

Broadcast Test - 1 CPU per node (256k bytes - uniform traffic) Broadcast Test - 1 CPU per node (256k bytes. unlform tralflc)

elan-has1 lobal . elan ----*---
elan-hhast{] :$obal ~ m a i n ...-*~-. .
elan-hbcast() -global. elan --*-

30 -
25 -
20 I I

4 16 64
Nodes

(a)

Broadcast Test . 1 CPU per node (256k bytes - complement tralflc)

alan-hast() - global. main -
elan-hast(lobal - elan ----*--- -

elan-hhastd :$obal. main --.--.-.-.
elan-hbcast() -global ~ elan --e--- -

40 -
35 -
"V

4 16
Nodes

(C)

64

12000

11000

10000

9 9000
v p BO00

5 7000

6000

5000

4000
4 16

Nodes
64

Broadcast Test ~ 1 CPU per node (256k bytes . complement IraffIC)

1 - elan-bcast global ~ haln
.... ,___ elan bcasd 1 olobal -elan

.main . elan

6500
8000

3000 ' I
4 16 64

Nod@$

(4

Figure 18. Broadcast Scalability with Contention

[14] Rajeev Sivaram, Ulrabaleswar Panda, and Craig Stunkel. Multicas-
ting in Irregular Networks with Cut-Through Switches using 'Tree-
Based Multidestination Worms. In Parallel Computing, Routing, arid
Communication Workshop, PCRCW'97, Atlanta, GA, June 1997.

[15] Marc Snir, Steve Otlo, Steven Huss-Lederman, David Walker, and
Jack Dongarra. MPZ - The Complete Reference, volume 1, The MPI
Core. The MIT Press, 1998.

[16] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proceedings of the 19th bi-
terriational Symposium on Computer Architecture, Gold Coast, Aus-
tralia, May 1992.

